Our publications

Publications
2026
Float8@2bits: Entropy Coding Enables Data-Free Model Compression (Preprint)
Patrick Putzky, Martin Genzel, Mattes Mollenhauer, Sebastian Schulze, Thomas Wollmann, Stefan Dietzel
2025
Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation.
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
Transactions on Machine Learning Research
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton
Advances in Neural Information Processing Systems (NeurIPS)
B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast
Toxicology Letters
Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
Justus Westerhoff, Golzar Atefi, Mario Koddenbrock, Alexei Figueroa, Alexander Löser, Erik Rodner, Felix A. Gers
Transactions on Machine Learning Research
Compressing Large Language Models to Any Size Without Recomputation
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
ICML Workshop ES-FoMo
Deep Joint Source-Channel Coding for Small Satellite Applications.
Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel
2024
Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann
Memorization with neural networks: going beyond the worst case
Sjoerd Dirksen, Patrick Finke, Martin Genzel
Journal of Machine Learning Research
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li
Advances in Neural Information Processing Systems (NeurIPS)
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton
Journal of Machine Learning Research
Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IFIP Networking Conference
DeepRod: A human-in-the-loop system for automatic rodent behavior analysis
Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann
ICML Workshop DMLR
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
Computer Communications
Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques
Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer
Energy and AI
Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs
Procedia CIRP
2023
Multiscale Neural Operators for Solving Time-Independent PDEs
Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio
NeurIPS Workshop DLDE
Scaling Experiments in Self-Supervised Cross-Table Representation Learning
Maximilian Schambach, Dominique Paul, Johannes S. Otterbach
NeurIPS Workshop TRL
Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities
Maximilian Schambach
Self-distilled Representation Learning for Time Series.
Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach
NeurIPS Workshop SSL
Curve Your Enthusiasm: Concurvity Regularization in Differentiable GAMs
Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel
Advances in Neural Information Processing Systems (NeurIPS)
Joint source and channel coding for small satellite applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IEEE Conference on Local Computer Networks (LCN)
Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
IFIP Networking Conference
Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann
Mediterranean Communication and Computer Networking Conference (MedComNet)
Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation
Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach
CVPR Workshop SAIAD
SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility
Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók
IFAC World Congress
NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations
Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach
Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management
Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach
ICLR Workshop AI4ABM
2022
Auto-Compressing Subset Pruning for Semantic Image Segmentation
Konstantin Ditschuneit, Johannes S. Otterbach
Pattern Recognition
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach
ICML Workshop AI4Science
Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IEEE International Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM)
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach
ICML Workshop AI4Science
2021
Johannes Otterbach, Thomas Wollmann
GI Computer Science
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows
Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann
MEAL: Manifold Embedding-based Active Learning
Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann
ICCV Workshops
Subscribe to the Merantix Momentum Newsletter now.
More articles
Our publications
Publications
2026
Float8@2bits: Entropy Coding Enables Data-Free Model Compression (Preprint)
Patrick Putzky, Martin Genzel, Mattes Mollenhauer, Sebastian Schulze, Thomas Wollmann, Stefan Dietzel
2025
Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation.
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
Transactions on Machine Learning Research
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton
Advances in Neural Information Processing Systems (NeurIPS)
B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast
Toxicology Letters
Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
Justus Westerhoff, Golzar Atefi, Mario Koddenbrock, Alexei Figueroa, Alexander Löser, Erik Rodner, Felix A. Gers
Transactions on Machine Learning Research
Compressing Large Language Models to Any Size Without Recomputation
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
ICML Workshop ES-FoMo
Deep Joint Source-Channel Coding for Small Satellite Applications.
Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel
2024
Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann
Memorization with neural networks: going beyond the worst case
Sjoerd Dirksen, Patrick Finke, Martin Genzel
Journal of Machine Learning Research
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li
Advances in Neural Information Processing Systems (NeurIPS)
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton
Journal of Machine Learning Research
Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IFIP Networking Conference
DeepRod: A human-in-the-loop system for automatic rodent behavior analysis
Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann
ICML Workshop DMLR
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
Computer Communications
Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques
Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer
Energy and AI
Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs
Procedia CIRP
2023
Multiscale Neural Operators for Solving Time-Independent PDEs
Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio
NeurIPS Workshop DLDE
Scaling Experiments in Self-Supervised Cross-Table Representation Learning
Maximilian Schambach, Dominique Paul, Johannes S. Otterbach
NeurIPS Workshop TRL
Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities
Maximilian Schambach
Self-distilled Representation Learning for Time Series.
Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach
NeurIPS Workshop SSL
Curve Your Enthusiasm: Concurvity Regularization in Differentiable GAMs
Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel
Advances in Neural Information Processing Systems (NeurIPS)
Joint source and channel coding for small satellite applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IEEE Conference on Local Computer Networks (LCN)
Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
IFIP Networking Conference
Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann
Mediterranean Communication and Computer Networking Conference (MedComNet)
Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation
Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach
CVPR Workshop SAIAD
SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility
Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók
IFAC World Congress
NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations
Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach
Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management
Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach
ICLR Workshop AI4ABM
2022
Auto-Compressing Subset Pruning for Semantic Image Segmentation
Konstantin Ditschuneit, Johannes S. Otterbach
Pattern Recognition
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach
ICML Workshop AI4Science
Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
IEEE International Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM)
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach
ICML Workshop AI4Science
2021
Johannes Otterbach, Thomas Wollmann
GI Computer Science
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows
Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann
MEAL: Manifold Embedding-based Active Learning
Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann
ICCV Workshops



.png)
.png)



.png)
.png)