Our publications

Discover the latest publications from our research team and more
from
Stefan Dietzel

Publications

2025

Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation (2025)

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

2025

Regularized least squares learning with heavy-tailed noise is minimax optimal (2025)

Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton

2025

P03-08 Can automatic rodent behavior analysis using AI/ML contribute to drug safety? First insights from DeepRod (2025)

B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast

2025

Compressing Large Language Models to Any Size Without Re-Computation (2025)

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

2025

Deep Joint Source-Channel Coding for Small Satellite Applications (2025)

Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel

2024

Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way (2024)

Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann

2024

Memorization with neural nets: going beyond the worst case (2024)

Sjoerd Dirksen, Patrick Finke, Martin Genzel

2024

Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms (2024)

Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li

2024

Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm (2024)

Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton

2024

Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2024

Quantority: Parameter Prioritization for Incremental Updates of Convolutional Neural Networks in Small Satellite Missions (2024)

Olga Kondrateva; Stefan Dietzel; Björn Scheuermann

2024

DeepRod: A human-in-the-loop system for automatic rodent behavior analysis (2024)

Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann

2024

Progressive Updates of Convolutional Neural Networks for Enhanced Reliability in Small Satellite Applications (2024)

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

2024

Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques (2024)

Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer

2024

Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling (2024)

Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs

2023

Multiscale Neural Operators for Solving Time-Independent PDEs (2023)

Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio

2023

Scaling Experiments in Self-Supervised Cross-Table Representation Learning (2023)

Maximilian Schambach, Dominique Paul, Johannes S. Otterbach

2023

Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities (2023)

Maximilian Schambach

2023

Self-distilled Representation Learning for Time Series (2023)

Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach

2023

Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs (2023)

Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel

2023

Joint Source-and-Channel Coding for Small Satellite Applications (2023)

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2023

SECREDAS: Safe and (Cyber-)Secure Cooperative and Automated Mobility (2023)

Sebastian Gerres

2023

Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization (2023)

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann,

2023

Parameter Prioritization for Efficient Transmission of Neural Networks in Small Satellite Applications (2023)

Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann

2023

Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation (2023).

Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach

2023

SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility (2023)

Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók

2023

NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations (2023)

Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach

2023

Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management (2023).

Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach

2022

Auto-Compressing Subset Pruning for Semantic Image Segmentation (2022)

Konstantin Ditschuneit, Johannes S. Otterbach

2022

Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks (2022).

Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach

2022

Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition (2022).

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2022

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks (2022).

Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach

2021

Chameleon: A Semi-AutoML framework targeting quick and scalable development and deployment of production-ready ML systems for SMEs (2021)

Johannes Otterbach, Thomas Wollmann

2021

DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows (2021).

Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann

2021

MEAL: Manifold Embedding-based Active Learning (2021).

Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann

Subscribe to the Merantix Momentum Newsletter now.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

More articles

The latest industry news, interviews, technologies and resources.

From buzzword to business lever: How business leaders use AI in practice, for themselves and their company

A practical guide for leaders who want to make good use of AI for personal productivity and corporate impact.

Turning AI challenges into real effects – together

How we can transform complex challenges in healthcare and pharmaceuticals into real impact through responsible AI, strong collaboration, and digital leadership.

DNA-Encoded Libraries and AI for Compound Identification

An expert interview on the use of DNA-encoded libraries for connection detection.

From data chaos to breakthroughs

An expert interview with Dr. Stephan Hegge, VP of Corporate Strategy at HotSpot Therapeutics and Dr. Thomas Wollmann, CTO at Merantix Momentum

AI as the key to administrative modernization: A practical step-by-step model for public administration

A practical step-by-step model explains how AI is becoming the central driver for efficiency, cultural change and the ability to act in administration.

Our publications

Publications

2025

Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation (2025)

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

2025

Regularized least squares learning with heavy-tailed noise is minimax optimal (2025)

Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton

2025

P03-08 Can automatic rodent behavior analysis using AI/ML contribute to drug safety? First insights from DeepRod (2025)

B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast

2025

Compressing Large Language Models to Any Size Without Re-Computation (2025)

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

2025

Deep Joint Source-Channel Coding for Small Satellite Applications (2025)

Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel

2024

Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way (2024)

Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann

2024

Memorization with neural nets: going beyond the worst case (2024)

Sjoerd Dirksen, Patrick Finke, Martin Genzel

2024

Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms (2024)

Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li

2024

Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm (2024)

Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton

2024

Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2024

Quantority: Parameter Prioritization for Incremental Updates of Convolutional Neural Networks in Small Satellite Missions (2024)

Olga Kondrateva; Stefan Dietzel; Björn Scheuermann

2024

DeepRod: A human-in-the-loop system for automatic rodent behavior analysis (2024)

Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann

2024

Progressive Updates of Convolutional Neural Networks for Enhanced Reliability in Small Satellite Applications (2024)

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

2024

Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques (2024)

Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer

2024

Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling (2024)

Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs

2023

Multiscale Neural Operators for Solving Time-Independent PDEs (2023)

Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio

2023

Scaling Experiments in Self-Supervised Cross-Table Representation Learning (2023)

Maximilian Schambach, Dominique Paul, Johannes S. Otterbach

2023

Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities (2023)

Maximilian Schambach

2023

Self-distilled Representation Learning for Time Series (2023)

Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach

2023

Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs (2023)

Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel

2023

Joint Source-and-Channel Coding for Small Satellite Applications (2023)

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2023

SECREDAS: Safe and (Cyber-)Secure Cooperative and Automated Mobility (2023)

Sebastian Gerres

2023

Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization (2023)

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann,

2023

Parameter Prioritization for Efficient Transmission of Neural Networks in Small Satellite Applications (2023)

Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann

2023

Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation (2023).

Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach

2023

SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility (2023)

Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók

2023

NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations (2023)

Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach

2023

Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management (2023).

Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach

2022

Auto-Compressing Subset Pruning for Semantic Image Segmentation (2022)

Konstantin Ditschuneit, Johannes S. Otterbach

2022

Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks (2022).

Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach

2022

Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition (2022).

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

2022

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks (2022).

Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach

2021

Chameleon: A Semi-AutoML framework targeting quick and scalable development and deployment of production-ready ML systems for SMEs (2021)

Johannes Otterbach, Thomas Wollmann

2021

DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows (2021).

Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann

2021

MEAL: Manifold Embedding-based Active Learning (2021).

Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann

Oops! Something has gone wrong.
Oops! Something has gone wrong.
Oops! Something has gone wrong.
Oops! Something has gone wrong.
Oops! Something has gone wrong.

Discover more whitepapers

The AI Canvas: Our tool for project evaluation

Discover the AI Canvas!

Towards Tabular Foundation Models

About the status quo, challenges and opportunities

Artificial Intelligence for Private Equity Portfolios

Increase in value for your entire portfolio

Artificial Intelligence for Private Equity Portfolios

Increase in value for your entire portfolio

Towards Tabular Foundation Models

About the status quo, challenges and opportunities

Leveraging the EU AI Act to your advantage

Using the EU AI Act to your advantage

Subscribe to the Merantix Momentum Newsletter now.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.